
Step-by-Step Guide to Publishing HTML5

Mobile Application on App Stores

If you're reading this you would probably already have a decent idea of what an HTML5

mobile application is, but you might not know how to actually get one on the Apple

App Store or Google Play.

You can submit an application built entirely with web technology to both of these stores

just like you would a native application (even if you don't have a Mac), and for the

majority of use cases it can look, feel and perform just as well as native

applications - as long as the application is designed well.

Users of mobile applications have come to expect a certain level of quality and design

from the applications they use. Android and iOS applications have a set of norms that -

if you stray to far from them - can make your application look amateurish and bad (or as

many people might say "not native"). A problem with web tech is that it has a low

barrier to entry and it will let you do anything, even if what you end up building is

nowhere near what a mobile application "should" look like. This has given HTML5

mobile applications a bit of a bad rap, since it is so easy to create mobile applications

with HTML5 web technologies, naturally there are a lot of bad ones out there.

If you pay attention to design/quality and spend an appropriate amount of time

learning how to build good mobile applications with web tech, then you can create high

quality applications indistinguishable from standard native applications in most cases

(another problem with the reputation of HTML5 mobile applications: people assume the

good ones are just "normal" native applications!).

There are a few steps between here and there, though. There are a few conceptual

differences to understand when creating an HTML5 mobile application, and you can

easily get stuck somewhere along the way.

I've created this step-by-step guide to point you in the right direction - no matter where

you are along your app store journey, this article should help give you the context you

need.

1. Understand the Difference Between

Native, Hybrid and Web Applications

Before you even get started, you should understand why you're building a mobile

application with web tech and what the difference is exactly between a web app, and

what is commonly referred to as a hybrid app, and a standrd native app.

If you're a little short on time, here's a little infographic I made that highlights the

appeal of the hybrid approach in a very simplified way. Please note that there are a

lot of factors not included in this infographic, and a hybrid approach is not always the

best solution:

https://www.joshmorony.com/media/2014/01/nativewebhybrid.png

Keep in mind that the purpose of this image is to highlight the benefit of the hybrid

approach, I'm not attempting to say "Look! The hybrid approach has 3/3 ticks in these

areas and is, therefore, the best solution possible".

It's easy enough to understand what a native application is: an application that was

coded using the native language of the platform. This means using Objective-

C/Swift/XCode for iOS, or Java/Kotlin/Android Studio for Android. A native application

has immediate access to everything that platform has to offer with no restrictions

whatsoever. The downside to this approach is that separate applications need to be built

for each platform.

A web application is an application that is powered by a browser (typically loaded

through the Internet). A web application is typically built using HTML, CSS and

JavaScript and can be served either through a desktop or mobile browser. A web

application can be built to mimic the feel and behaviour of a normal native application,

but instead just runs through a browser. Using this approach means you won't have

access to all the bells and whistles a native application does (i.e. Native APIs) and

you can't distribute your application through most app stores . However, building

Progressive Web Applications – which basically just means a modern/offline-capable

mobile web application – is becoming a very popular distribution method.

A hybrid application is a mix of the native and web approach that allows you to build

the application once and submit it to multiple app stores. A hybrid application uses a

native packager like Cordova or Capacitor which essentially wraps up a browser web

view into a native application and displays your web application through it. With this

approach, users of the application will no longer be able to see the browser the app is

being run through (so it will just appear like a normal native application to them), you

have access to native functionality through Cordova/Capacitor and you can distribute

your application through app stores.

The most obvious question that might arise from this is:

If Hybrid applications are so great, and provides the best of both worlds,

why isn't everybody using them?

To drill down into all of the differences between a hybrid and native approach would

take a massive undertaking. But in short, the main benefit of building native is that

it offers the best possible performance and feature set. You aren't dealing with

additional abstractions, tools, or limitations of any kind.

https://www.joshmorony.com/building-a-pwa-with-stencil-an-introduction-to-stencil/
https://www.joshmorony.com/building-a-pwa-with-stencil-an-introduction-to-stencil/
https://cordova.apache.org/
https://capacitor.ionicframework.com/

This doesn't mean that if you build natively instead of with a web based approach that

your application will inherently just be better. In most cases, the choice just comes down

to personal preference, and the skills that are available in your team. Most requirement

sets could be satisfied by either a native or hybrid approach. Whilst native applications

have the potential for much higher performance, in most cases, it doesn't make any

noticeable difference (again, assuming that the application is designed well). There are

circumstances where a hybrid approach is not viable, and some where it isn't

ideal/feasible, but these are few and far bettern. Just about any business style

application could be built with web tech. If you are looking into designing an application

that relies heavily on processing power, games, 3D graphics, or that integrates heavily

with native features you would need to be more careful about your decision. Most

"typical" applications can easily be satisfied with web tech.

I often use the analogy of purchasing a high-performance supercar for city driving. If

you're never driving faster than 60km/ph it will hardly make a difference that your

car could travel at 300km/ph. It never needs to, so it doesn't matter. People often fall

into the trap where they build something that doesn't perform well, and think that if

they had access to more power (e.g. if the application was fully native instead) then it

would perform better. It doesn't matter how much performance you have, if something

is designed poorly it will still perform poorly - no matter whether you are using web

tech or native code.

If you are interested in more of my thoughts on the web based approach to building

mobile applications, take a look at my home page or my article on the performance of

Ionic.

You will find a lot of opinions on what approach is the best for creating mobile

applications between options like:

• Native iOS/Android

• Ionic

• React Native

• Xamarin

• Flutter

• NativeScript

https://www.joshmorony.com/
https://www.joshmorony.com/ionic-framework-is-fast-but-your-code-might-not-be/
https://www.joshmorony.com/ionic-framework-is-fast-but-your-code-might-not-be/

...and more. Ultimately, all are perfectly capable of creating great applications in the

right circumstances and with the right people. The only reasonable answer to which

approach is the best is always "it depends". This article is specifically about using a

hybrid/HTML5 approach to building mobile applications, so I will be focusing on aspects

related to that.

2. Design Your Application

Before committing to a particular approach, make sure you have your requirements

defined and that your approach is going to meet those requirements.

If you would like to create a progressive web application (an application that runs

entirely through the Internet, rather than being distributed through native app stores),

then you only have access to features that are available to the browser. Make sure all of

the functionality you require is available here. Don't worry if you later decide to include

native functionality, it's easy to convert your PWA to a hybrid app and distribute it

through the native app stores.

If you want access to some native API's or want to submit your application to app

stores (or both) then a hybrid approach is going to be your best bet. The same general

process for creating the application is the same as a normal web application/PWA,

except that we wrap it up in a native package. We'll talk more about integrating

Cordova/Capacitor to access native API's and wrap your application later, but make sure

the functionality you require is available as a Plugin API in Cordova or Capacitor, or

that there is a 3rd party Cordova/Capacitor plugin available that provides the

functionality you need (anybody can create their own Cordova/Capacitor plugin that

accesses native functionality).

When designing your application keep in mind the iOS Human Interface

Guidelines and Android Design guidelines. Keep in mind that some of the information

in these guidelines will be specific to native applications, so don't worry too much about

it. Just make sure you follow good design principles that are prevalent in most mobile

applications - your application should look/behave/feel similar to standard native

applications.

If you're building an application to be distributed through the Apple and Google Play

app stores, you need to play by their rules. Make sure you comply with the Apple App

Store Review Guidelines and the Google Play Developer Program Policies. This is

where the benefit of distributing your application as a Progressive Web

https://caniuse.com/
https://cordova.apache.org/docs/en/latest/
https://capacitor.ionicframework.com/docs/
https://www.joshmorony.com/publishing-a-custom-ios-capacitor-plugin-on-npm/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/
https://developer.android.com/design/index.html
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
https://play.google.com/about/developer-content-policy.html
https://www.joshmorony.com/the-biggest-advantage-of-ionic-applications-web-views/

Application comes in – using the open web means we don't need to jump through

somebody else's hoops.

Apple especially can be a bit fickle with their application of the guidelines, but if you

break any of them (sometimes even if you don't) your application may be

rejected and you will have to fix the problem and resubmit. Here are a few gotchas to

watch out for that might see your application be rejected:

• Your app is more like a web page than a mobile application

• You don't handle online/offline states

• Your app is slow or unresponsive

• Your application doesn't make use of native features (i.e. there isn't really a

reason for it to be distributed as a native app instead of a standard

website)

Apple is generally more strict than Google when it comes to the review process.

3. Build Your Application Using a

Framework and a UI Kit/Design System

HTML5 UI Kits/Design Systems (like Ionic) and frameworks (like Angular, StencilJS,

React, and Vue) are the corner stone of developing high quality HTML5 mobile

applications. Attempting to build out an entire mobile application from scratch on your

own is essentially pointless and futile. You would spend an enormous amount of time

trying to replicate a mobile user interface - with all of the smooth animations,

interactions, and screen transitions that involves - and chances are, you wouldn't get

close to the quality you can get from Ionic out of the box. They've already done a lot of

the hard work for you, no need to re-invent the wheel.

Ionic provides a set of web components for building out the user interface of an

application - this includes common elements like lists, buttons, tabs, navigation bars,

https://www.joshmorony.com/the-biggest-advantage-of-ionic-applications-web-views/
https://ionicframework.com/docs

inputs, and so on. With Ionic, to create a typical mobile list that performs well and scrolls

smoothly, all we have to do is drop something like this into our template:

<ion-list> <ion-item> Apple </ion-item> <ion-item> Banana </ion-item>

<ion-item> Coconuts </ion-item> <ion-item> Durian </ion-item> <ion-

list></ion-list></ion-list>

...and the work is done. If you were to try and recreate the behaviour of a native

smooth scrolling list with acceleration and deceleration by yourself you would likely

not achieve a good result without an enormous amount of effort – and there is a good

chance your application may end up getting rejected from app stores. With Ionic, this is

all built-in.

However, there is more to building out a mobile application than just the user

interface. Things need to happen. When a user clicks a button we might want to kick off

some process, or navigate to another screen. We might want to store data, and load

that data in later. There is all sorts of logic that we want to take place in our application.

The Ionic web components are not just aesthetic, they also have a lot of functionality

built into them that we can interact with. We still generally need something more than

just Ionic or any other UI Kit/Design System to manage building out an application

though. We need something to manage the overall architecture and logic/functionality

of the application - the behind the scenes sort of stuff. Ionic and similar systems

are primarily designed to handle the interface.

To handle everything else, we would typically combine our UI Kit/Design system with

some kind of JavaScript framework.

Although Ionic was once built specifically for the Angular framework, it is now

completely framework independent and can be used with just about anything.

For a lightweight approach, you can actually build an entire Ionic application using

the Ionic teams own StencilJS - this gives you a lot of the benefits of a framework,

without actually needing to use a traditional framework to build your application.

StencilJS is not like a traditional framework, it is a "web component compiler", so the

final build of your application mostly just runs on standard functionality built into the

browser, rather than requiring a large runtime from a framework (StencilJS has just a

6kb minified and gzipped runtime).

On the other end of the spectrum, you can use a framework like Angular to build an

Ionic application. Angular is what was originally used to build Ionic applications, and it

is still the most popular choice today. Although Angular is a "heavier" and more

https://www.joshmorony.com/creating-ionic-applications-with-stencil-js/
https://www.joshmorony.com/creating-ionic-applications-with-stencil-js/
https://www.joshmorony.com/building-mobile-apps-with-ionic-2/
https://www.joshmorony.com/building-mobile-apps-with-ionic-2/

opinionanted framework, it provides just about everything you need out of the box and

is well suited to large/complex/enterprise applications. The learning curve for Angular

can be a little steep as there is quite a few Angular specific concepts you will need to

learn, but once learned, you will have a very powerful tool at your disposal.

As I mentioned, Ionic can be used with just about anything - so if you have a preferred

framework you can probably use it. Ionic is also now building out support specifically

for React and Vue.

4. Test Your Application Through the

Browser

The great thing about developing mobile applications with HTML5 is that you can test

it right through your browser.

Different frameworks may be run in different ways but typically you will be able to

access your application through a local web server by going to:

http://localhost:8100

in your browser. If you're using Chrome Dev Tools you can even emulate the device you

are designing for by clicking the mobile icon in the top left:

From here you can debug your application to your hearts content using the various

debugging tools provided by the browser.

If you're building a web application/PWA, then once you've finished this stage your app

is all good and ready to go. You would just need to deploy it to the web. But if you want

to create a hybrid application that can access native API's and be submitted to app

stores, it's now time to package the application.

5. Package Your Application

You can use a technology like Cordova or Capacitor (built by the Ionic team) to wrap

your web application in a native wrapper and act as a bridge between your application

and the Native APIs of the device.

If you want to build iOS applications but don't have a Mac you can use a service

likePhoneGap Build, or Ionic's own Package service. To build for iOS you need the

appropriate SDKs installed on your machine, and you need a Mac for that, however, if

you didn't want to use one of these build services you could also do something fancy

like setting up a virtual machine to provide access to the necessary macOS software.

The basic role that Cordova/Capacitor performs is this:

https://cordova.apache.org/docs/en/latest/
https://capacitor.ionicframework.com/docs/
http://build.phonegap.com/
https://ionicframework.com/docs/pro/package/
https://www.joshmorony.com/media/2015/04/chrome-dev-tools.jpg

• Cordova/Capacitor creates a native application that contains a web view

• All of the resources for your application are stored inside of this native

application

• Cordova/Capacitor loads your web-based application into the web view

(the web view cannot be seen by the user)

• The web view displays your application to the user

Our application is really still just a web application since it is being powered by the

browser, but now we also have access to the device through Cordova/Capacitor, and it

can be installed like a normal native application when distributed through app stores.

Enjoying learning about hybrid apps? Consider retweeting to share

with others 😀

Read my "big picture" overview of what a "hybrid" application is and the

steps required to publish them: https://t.co/dfqhBUOpWB

<p> — Josh Morony (@joshuamorony) <a

href="https://twitter.com/joshuamorony/status/973328711775764480?ref_src=twsr

c%5Etfw">March 12, 2018</p>

6. Access Native APIs (optional)

You can just use Cordova/Capacitor to package your application so that it can be

submitted to app stores, but why stop there? We have access to all this magical native

functionality now!

With Cordova or Capacitor, we can access just about everything that a native application

can. Rather than interacting with the device directly, we could use Cordova to pass

messages between the device and our application.

https://t.co/dfqhBUOpWB

Typically, the native functionality will be available through some global Javascript

object. We will use the Cordova Camera API as an example. To trigger the camera all

we need to do is run the following bit of JavaScript:

navigator.camera.getPicture(onSuccess, onFail, { quality: 50,

destinationType: Camera.DestinationType.DATA_URL,});function

onSuccess(imageData) { var image = document.getElementById('myImage');

image.src = 'data:image/jpeg;base64,' + imageData;}function onFail(message) {

alert('Failed because: ' + message);}

This tells Cordova to tell the device to launch the camera, and then we can grab the

resulting image data from the onSuccess function. In this case the functionality is

available through the camera object which can be found at navigator.camera.

Sometimes though, like in the case of the AdMob plugin, the functionality will be

available directly through an object that is available globally like:

admob.someMethod();

If you were using Capacitor, then interacting with the Camera API might look more like

this:

import { Plugins, CameraResultType } from '@capacitor/core';const { Camera }

= Plugins;async takePicture() { const image = await Camera.getPhoto({

quality: 90, allowEditing: true, resultType: CameraResultType.Uri });

console.log(image.webPath);}

7. Test Your Application on a Device

I mentioned before that one of the great things about HTML5 applications is that you

can test them through your browser. Once you start integrating

Cordova/PhoneGap/Capacitor and native API's though testing through the browser

isn't so great.

http://docs.phonegap.com/en/edge/cordova_camera_camera.md.html
http://www.joshmorony.com/monetizing-your-phonegap-build-app-with-admob/
https://capacitor.ionicframework.com/docs/apis/camera
https://www.joshmorony.com/media/2015/01/vibrate.png

To test an application that is accessing native API's you will need to run the

application on an actual device. But how do you debug without your browser

debugging tools? Don't fret! You can still debug directly on your device and access the

same browser debugging tools, you can check out the videos below for more

information on how exactly to do that:

• Debugging Ionic Applications When Deployed to an Android Device

• Debugging Ionic Applications When Deployed to an iOS Device

It's an important step, in any case, to test on a device, whether you're using native

functionality or not. The behaviour on an actual device can be different than when it is

viewed through a desktop browser.

8. Sign Your Application

To distribute your applications on app stores you will need to "sign" your

application, and in the case of iOS you need to sign your application before you can

even install it on a device.

For an iOS application you will need to create a .p12 personal information file and a

provisioning profile. You can more easily sign an iOS application if you have a Mac and

XCode but it is also possible to sign an iOS application without a Mac (the article I linked

above describes how to do that).

To sign an Android application, you simply need to create a single keystore file. The

Ionic documentation has some examples of how to get through the signing process.

If you want to use Capacitor to distribute your applications, I have a complete guide to

signing/distributing available here:

• Deploying Capacitor Applications to Android (Development &

Distribution)

• Deploying Capacitor Applications to iOS (Development &

Distribution)

https://www.youtube.com/watch?v=Y1rD954ZyKA
https://www.youtube.com/watch?v=9J8AxhDxtTE
http://www.joshmorony.com/how-to-create-an-ios-provisioning-profile-and-p12-with-windows/
http://www.joshmorony.com/how-to-create-an-ios-provisioning-profile-and-p12-with-windows/
https://ionicframework.com/docs/intro/deploying/
https://www.joshmorony.com/deploying-capacitor-applications-to-android-development-distribution/
https://www.joshmorony.com/deploying-capacitor-applications-to-android-development-distribution/
https://www.joshmorony.com/deploying-capacitor-applications-to-ios-development-distribution/
https://www.joshmorony.com/deploying-capacitor-applications-to-ios-development-distribution/

9. Distribute Your Application

Assuming that you want to distribute your application in the native app stores, you'll

need to sign up for the iOS Developer Program (in fact, you'll have to do this to create

your provisioning profile and such anyway) and as a Google Play Developer.

If you want to publish your application as a Progressive Web Application, you do not

need to do this (and you don't need to worry about signing your application either).

You will need to prepare your app store listings for both platforms and provide some

details about your application. To submit to Google Play you will simply be able to

upload your .apk file through the developer console. To submit to the Apple App Store

without a Mac though you will need to use the Application Loader program or XCode,

which are only available on Macs. You can use a service like Macincloud.com to get

around this, though.

Summary

I hope that this article has been able to give you some context around the path to

building and deploying an HTML5 mobile application to the Apple App Store and

Google Play. There are a lot of steps in between, of course, and this has just been a very

high-level overview.

Courtesy: https://www.joshmorony.com/the-step-by-step-guide-to-publishing-a-html5-mobile-

application-on-app-stores/

Modified: 2021.10.06.8.05.PM

Dököll Solutions, Inc.

https://developer.apple.com/programs/ios/
https://play.google.com/apps/publish/
http://www.joshmorony.com/the-challenges-of-developing-ios-applications-on-a-pc/
http://www.joshmorony.com/the-challenges-of-developing-ios-applications-on-a-pc/
https://www.joshmorony.com/the-step-by-step-guide-to-publishing-a-html5-mobile-application-on-app-stores/
https://www.joshmorony.com/the-step-by-step-guide-to-publishing-a-html5-mobile-application-on-app-stores/

